module Data.Probability where import Definitive newtype ProbT t m a = ProbT (WriterT (Product t) (LogicT m) a) deriving (Unit,Functor,SemiApplicative,Applicative ,Semigroup,Monoid ,MonadFix,MonadWriter (Product t)) instance Ring t => Monad (ProbT t m) where join = coerceJoin ProbT type Prob t a = ProbT t Id a i'ProbT :: Iso (ProbT t m a) (ProbT t' m' a') (WriterT (Product t) (LogicT m) a) (WriterT (Product t') (LogicT m') a') i'ProbT = iso ProbT (\(ProbT p) -> p) probT :: (Monad m,Monad m') => Iso (ProbT t m a) (ProbT t' m' a') (m [(t,a)]) (m' [(t',a')]) probT = listLogic.mapping (i'pair i'_ id).writerT.i'ProbT prob :: Iso (Prob t a) (Prob t' a') [(t,a)] [(t',a')] prob = i'Id.probT c'prob :: Constraint t -> Constraint (Prob t a) c'prob _ = c'_ instance (Monad m,Invertible t) => MonadList (ProbT t m) where choose l = pure [(x,a) | a <- l]^.probT where x = recip (size l) sample :: Monoid t => (a -> Bool) -> Prob t a -> (t,t) sample px p = foldMap (\(t,x) -> (if px x then t else zero,t)) (p^..prob) sampleAll :: (Ord b,Monoid t) => (a -> b) -> Prob t a -> Map b t sampleAll fx p = foldr (\(t,x) -> at (fx x).l'Just zero %~ (+t)) zero (p^..prob) normalize :: (Monad m,Invertible t) => ProbT t m a -> ProbT t m a normalize = from probT %~ map (\l -> let sz = recip (foldMap fst l) in map (first (*sz)) l)